OPEN IN READ APP
JOURNAL ARTICLE

Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1

Lale Evsen, Satoko Sugahara, Masanori Uchikawa, Hisato Kondoh, Doris K Wu
Journal of Neuroscience 2013 February 27, 33 (9): 3879-90
23447599
Sox2 is required for proper neuronal formation in the CNS, but the molecular mechanisms involved are not well characterized. Here, we addressed the role of Sox2 in neurogenesis of the developing chicken inner ear. Overexpressing Sox2 from a constitutive (β-actin) promoter induces the expression of the proneural gene, Neurogenin1 (Ngn1); however, the expression of a downstream target of Ngn1, Neurod1, is unchanged. As a result, there is a reduction of neural precursors to delaminate and populate the developing cochleo-vestibular ganglion. In contrast, overexpression of either Ngn1 or Neurod1 is sufficient to promote the neural fate in this system. These results suggest that high levels of Sox2 inhibit progression of neurogenesis in the developing inner ear. Furthermore, we provide evidence that Ngn1 and Neurod1 inhibit Sox2 transcription through a phylogenetically conserved Sox2 enhancer to mediate neurogenesis. We propose that Sox2 confers neural competency by promoting Ngn1 expression, and that negative feedback inhibition of Sox2 by Ngn1 is an essential step in the progression from neural precursor to nascent neuron.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
23447599
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"