Cardiorespiratory fitness predicts clustered cardiometabolic risk in 10-11.9-year-olds

Emma L Houston, Julien S Baker, Duncan S Buchan, Gareth Stratton, Stuart J Fairclough, Lawrence Foweather, Rebecca Gobbi, Lee E F Graves, Nicola Hopkins, Lynne M Boddy
European Journal of Pediatrics 2013, 172 (7): 913-8
The aim of this study was to investigate levels of clustered cardiometabolic risk and the odds of being 'at risk' according to cardiorespiratory fitness status in children. Data from 88 10-11.9-year-old children (mean age 11.05 ± 0.51 years), who participated in either the REACH Year 6 or the Benefits of Fitness Circuits for Primary School Populations studies were combined. Waist circumference, systolic blood pressure, diastolic blood pressure, glucose, triglycerides, high-density lipoprotein cholesterol, adiponectin and C-reactive protein were assessed and used to estimate clustered cardiometabolic risk. Participants were classified as 'fit' or 'unfit' using recently published definitions (46.6 and 41.9 mL/kg/min for boys and girls, respectively), and continuous clustered risk scores between fitness groups were assessed. Participants were subsequently assigned to a 'normal' or 'high' clustered cardiometabolic risk group based on risk scores, and logistic regression analysis assessed the odds of belonging to the increased cardiometabolic risk group according to fitness. The unfit group exhibited significantly higher clustered cardiometabolic risk scores (p < 0.001) than the fit group. A clear association between fitness group and being at increased cardiometabolic risk (B = 2.509, p = 0.001) was also identified, and participants classed as being unfit were found to have odds of being classified as 'at risk' of 12.30 (95 % CI = 2.64-57.33). Conclusion Assessing cardiorespiratory fitness is a valid method of identifying children most at risk of cardiometabolic pathologies. The ROC thresholds could be used to identify populations of children most at risk and may therefore be used to effectively target a cardiometabolic risk-reducing public health intervention.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"