Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04.

BACKGROUND: Posterior capsular opacification (PCO) is a common complication of cataract surgery. Transforming growth factor-β2 (TGF-β2) plays important roles in the development of PCO. The existing pharmacological treatments are not satisfactory and can have toxic side effects.

METHODOLOGIES/PRINCIPAL FINDINGS: We evaluated the effect of pirfenidone on proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cell line SRA01/04 (HLECs) in vitro. After treatment with 0, 0.25, and 0.5 mg/ml pirfenidone, cell proliferation was measured by MTT assay. Cell viability was determined by trypan blue exclusion assay and measurement of lactate dehydrogenase (LDH) activity released from the damaged cells. And cell migration was measured by scratch assay in the absence or presence of transforming growth factor-β2 (TGF-β2). The expressions of TGF-β2 and SMADs were evaluated with real-time RT-PCR, western blot, and immunofluorescence analyses. The mesenchymal phenotypic marker fibronectin (FN) was demonstrated by Immunocytofluorescence analyses. The cells had high viability, which did not vary across different concentrations of pirfenidone (0 [control] 0.3, 0.5 or 1.0 mg/ml) after 24 hours. Pirfenidone (0∼0.5 mg/ml) had no significant cytotoxicity effect on SRA01/04 by LDH assay. Pirfenidone significantly inhibited the proliferation and TGF-β2-induced cell migration and the effects were dose-dependent, and inhibited TGF-β2-induced fibroblastic phenotypes and TGF-β2-induced expression of FN in SRA01/04 cells. The cells showed dose-dependent decreases in mRNA and protein levels of TGF-β2 and SMADs. Pirfenidone also depressed the TGF-β2-induced expression of SMADs and blocked the nuclear translocation of SMADs in cells.

CONCLUSION: Pirfenidone inhibits TGF-β2-induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04 at nontoxic concentrations. This effect may be achieved by down regulation of TGF-β/SAMD signaling in SRA01/04 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app