Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage.

Biomaterials 2013 May
Here, a spheroidal 3D co-culture model of primary (rat) pancreatic islets and hepatocytes with uniform size and shape was developed using hemispheric concave microwell arrays. We conducted morphological and functional analyses of hybrid spheroids versus mono-cultures of islets or hepatocytes (controls). For the establishment of a 3D hybrid model, a broad range of cell ratios - 1:1, 1:3, 1:5, 1:7, 3:1, 5:1 and 7:1 mixture - of hepatocytes and pancreatic islets were used. As control, each hepatocyte and pancreatic islet were mono-cultured forming 3D spheroids. The transient morphology of spheroid formation in 9 culture models was observed using optical microscopy. Cell viability under these culture environments was assessed, and the morphologies of the outer and inner porous cell-spheroid structures were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and imaging of stained spheroid sections. The pancreatic islet-specific function of hybrid spheroids was evaluated by measuring insulin secretion and in vivo test by xenotransplantation of encapsulated spheroids in microfibers with a consistent maintenance of normal blood glucose levels over 4 weeks, while liver-specific functions were measured in terms of albumin secretion, urea secretion and cytochrome P450 activity. These diverse observations and evaluations validated the positive and bidirectional effects of co-cultured 3D spheroids. The proposed 3D co-culture model demonstrated that both cells appeared to support each other's functions strongly in spheroids, even though smaller proportions of each cell type was evaluated compared to mono-culture models, suggesting that the proposed model could help overcome the problem of cell shortages in clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app