English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Investigation of the chain structure and thermal property of xylene solubles of impact polypropylene copolymers].

Impact polypropylene copolymers (IPC) are in-situ blends of polypropylene homopolymer and ethylene-alpha-olefin copolymers formed in the reactor, which is a multiphasic complex material with isotactic polypropylene (iPP) as a matrix in which poly(ethylene-alpha-olefin) elastomeric copolymer is finely dispersed, and ethylene-alpha-olefin random copolymer (EPR) acts as an elastomer to improve the impact resistance properties of iPP at room temperature and low temperature. In the present, the content of xylene soluble is used to evaluate the content of EPR rubber phase in IPC. The content, the chain structure, and glass transition temperature (T(g)) of EPR rubber are critical to the toughness of IPC. In the present report, Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry(DSC) were utilized to study the comonomer content, chain structure and thermal property of xylene soluble of two IPC prepared by different catalysts. The results indicated that there are small amount of ethylene-propylene segmented copolymers containing short methylene sequence that is crystallizable in the xylene soluble in addition to the ethylene-propylene random copolymers. And the sequence length of crystallizable methylene group of ethylene-propylene segmented copolymers in these two kinds of xylene soluble is different. The random distribution degree of ethylene and propylene monomer in the ethylene-propylene copolymers in these two kinds of xylene soluble is similar. The xylene soluble with lower content of PPP sequence and higher content of ethylene monomer has lower T(g), which will benefit the improvement of impact resistance property of polypropylene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app