JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neural regeneration in a novel nerve conduit across a large gap of the transected sciatic nerve in rats with low-level laser phototherapy.

This study proposes a biodegradable nerve conduit comprising 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linked gelatin annexed with β-tricalcium phosphate (β-TCP) ceramic particles (EDC-gelatin-TCP, EGT). For this study, the EGT-implant site in rats was irradiated using 660-nm GaAlAsP laser diodes (50 mW) for trigger point therapy to investigate the use of low-level laser (LLL) stimulation in the regeneration of a 15-mm transected sciatic nerve. Animals were divided into three groups: a control group undergoing autologous nerve graft (autograft); a sham-irradiated group (EGT), and an experimental group undergoing laser stimulation (EGT/LS). Two trigger points on the surgical incision along the sciatic nerve were irradiated transcutaneously for 2 min daily for 10 consecutive days. Twelve weeks after implantation, walking track analysis showed a significantly higher sciatic functional index (SFI; p < 0.05) and improved toe spreading development in the autograft and EGT/LS groups, compared to the EGT group. In the electrophysiological measurement, the mean recovery index (peak amplitude and area) of the compound muscle action potential curves in the autograft and EGT/LS groups showed significantly improved functional recovery than in the EGT group (p < 0.05). Compared with the EGT group, the autograft and EGT/LS groups showed a reduction in muscular atrophy. Histomorphometric assessments showed that the EGT/LS group had undergone more rapid nerve regeneration than the EGT group. Therefore, motor function, electrophysiological reaction, muscular reinnervation, and histomorphometric assessments demonstrate that LLL therapy can accelerate the repair of a 15-mm transected peripheral nerve in rats after being bridged with the EGT nerve conduit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app