Comparison of microRNA expression in hippocampus and the marginal division (MrD) of the neostriatum in rats

Si Yun Shu, Di Qing, Bin Wang, Qi-yi Zeng, Yan-chen Chen, Ying Jin, Chang-chun Zeng, Rong Bao
Journal of Biomedical Science 2013, 20: 9

BACKGROUND: MicroRNAs (miRNAs), a class of highly conserved small non-coding RNA molecules, are known to play essential roles in central nervous system (CNS) by causing post-transcriptional gene silencing. There is much evidence that miRNAs have specific temporal and spatial expression patterns in the mammal brain, but little is known about the role of the region specificity for the gene regulatory networks of the brain. This study represents the first attempt to perform a profiling analysis of the differential expression of miRNAs between hippocampus and the Marginal division (MrD) of the neostriatum in the rat brain.

RESULTS: Microarray was used to detect the expression of 357 miRNAs in hippocampus and the MrD from three rats. A short-list of the most dysregulated 30 miRNAs per rat was generated for data analysis, and the miRNAs that were represented in two or three short-lists were then further analyzed. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was employed to validate the aberrantly expressed miRNAs obtained from the miRNA microarray analysis. A family of 11 miRNAs demonstrated differential expression between the MrD and hippocampus in more than one rat. Amongst these, miR-383 was differentially expressed in all three rats and up-regulated to the largest degree in rat one, and the ten other miRNAs, let-7d*, miR-181b, miR-187, miR-195, miR-214, miR-382, miR-411, miR-466b, miR-592 and miR-1224 were differentially expressed in at least two rats. Of these ten, besides miR-382 and miR-411 which were up-regulated in one rat and down-regulated in another, the other eight miRNAs retained a uniform direction of regulation (up-regulation or down-regulation) between different specimens. When further examined by RT-PCR, the aberrantly expressed miRNAs, except miR-383 and let-7d*, demonstrated differential expression that significantly correlated with the microarray findings.

CONCLUSION: This study reported that the miRNA expression patterns in MrD was distinct from that of Hip, suggesting the role of miRNAs in the learning and memory function of the MrD probably different from hippocampus.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"