Add like
Add dislike
Add to saved papers

Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-α and NF-κB activation.

Alcohol 2013 March
The present investigation was designed to evaluate the efficacy of diosmin against ethanol-induced hepatotoxicity in rats by modulating various mechanisms including ethanol metabolizing enzymes, generation of free radicals, imbalance in oxidant-antioxidant status, oxidative damage to membrane lipids, activation of transcription factors and elevation in inflammatory markers involved in ethanol-induced hepatic damage. Diosmin is a flavone glycoside, having anti-inflammatory and anti-cancer properties. Thirty female Wistar rats segregated in five groups, each with six animals. Group I as control followed by Group II, III and IV were treated with ethanol for 28 days. While groups III and IV were administered with diosmin at 10 mg/kg b wt (D1) and 20 mg/kg b wt (D2) respectively prior to ethanol administration. Group V was given only higher dose of diosmin. In ethanol-treated group, ethanol metabolizing enzymes viz., CYP 450 2E1 and alcohol dehydrogenase (ADH) significantly increased by 77.82% and 32.32% in liver tissues respectively as compared with control group and this enhancement is significantly normalized with diosmin administration. Diosmin administration (D1 & D2) significantly (p < 0.001) attenuates oxidative stress markers i.e., LPO, GSH, GPx, GR and XO by 90.77 & 137.55%, 17.18 & 25%, 37.3 & 49.86%, 21.63 & 44.9% and 56.14 &77.19% respectively. Serum ALT, AST and LDH significantly increased by 102.03, 116.91 and 45.20% in ethanol-treated group as compared with control group. Group III and IV animals showed significant reduction in the serum toxicity markers. Diosmin further alleviated ethanol-induced NF-κB activation, enhanced expression of TNF-α, COX-2 and iNOS. Findings from the present study permit us to conclude that diosmin alleviates alcoholic liver injury via modulating ethanol metabolizing pathway, inhibition of oxidative stress markers and suppression of inflammatory markers. This may represent a novel protective strategy against ethanol-induced liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app