JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Caffeoylserotonin protects human keratinocyte HaCaT cells against H2 O2 -induced oxidative stress and apoptosis through upregulation of HO-1 expression via activation of the PI3K/Akt/Nrf2 pathway.

Caffeoylserotonin (CaS) has strong radical scavenging activity as well as antioxidant activities, protecting cells from lipid peroxidation, intracellular reactive oxygen species generation, DNA damage, and cell death. The molecular mechanism by which CaS protects against oxidative stress is not well understood. Here, we analyzed the cytoprotective activity of CaS in hydrogen peroxide (H2 O2 )-treated keratinocyte HaCaT cells. H2 O2 induced apoptosis in the cells through activation of pro-apoptotic p21, Bax, and caspase-3. Pretreatment with CaS inhibited apoptotic gene expression and activated the anti-apoptotic gene, Bcl-xL. Although CaS did not directly affect heme oxygenase-1 (HO-1) expression, pretreatment with CaS augmented HO-1 expression through an increase in NF-E2-related factor (Nrf2) stability and stimulation of Nrf2 translocation to the nucleus upon H2 O2 exposure. H2 O2 also induced the phosphorylation and subsequent activation of ERK, p38 MAPK, and Akt. Analysis using specific inhibitors of p38 MAPK and Akt demonstrated that only Akt activation was involved in HO-1 and Nrf2 expressions. In addition, PI3K and PKC inhibitors suppressed HO-1/Nrf2 expression and Akt phosphorylation. These results demonstrate that CaS protects against oxidative stress-induced keratinocyte cell death in part through the activation of Nrf2-mediated HO-1 induction via the PI3K/Akt and/or PKC pathways, but not MAPK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app