JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oestrogens promote tumorigenesis in a mouse model for colitis-associated cancer.

Gut 2014 Februrary
BACKGROUND: Hormone replacement therapy increases the risk of developing ulcerative colitis in postmenopausal women. Chronic intestinal inflammation predisposes to colon cancer development, but effects of female hormones on colitis-associated cancer development have not been examined.

AIM: To investigate the role of female hormones in the dextran sodium sulfate (DSS)-azoxymethane (AOM) mouse model for colitis-associated cancer.

DESIGN: We performed ovariectomies, or sham operations, on mice, and supplemented these animals with indicated hormones. Additionally, we used oestrogen receptor α or β (Erα or Erβ) mutant mice. To study colitis or colitis-associated cancer, we used DSS only, or DSS and AOM, respectively.

RESULTS: Ovariectomy protects female mice against colitis-associated tumour development. Hormone replacement in ovariectomised mice with either oestradiol (E2), medroxyprogesterone acetate or a combination of both suggests that oestrogens are the ovary-derived factor that promotes tumour development in the context of inflammatory damage. E2-treated animals showed increased clinical symptoms and Il-6 production upon DSS-induced colitis and enhanced epithelial proliferation. Treatment with E2 markedly increased the numbers of polyps in ovariectomised mice and also strongly promoted tumour progression with all E2-treated animals developing at least one invasive adenocarcinoma, whereas, placebo-treated animals developed adenomas only. Using Er mutant mice, we find that the protumorigenic effect of oestrogen depends on both Erα and Erβ.

CONCLUSIONS: Our results suggest that oestrogens promote inflammation-associated cancer development by impairing the mucosal response to inflammatory damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app