JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiRNA-200b represses transforming growth factor-β1-induced EMT and fibronectin expression in kidney proximal tubular cells.

MicroRNAs (miRNAs) comprise of a novel class of endogenous small noncoding RNAs that frequently downregulate the expression of target genes. Recent reports suggest that miRNA-200b prevents epithelial-to-mesenchymal transition (EMT) in cancer cells by targeting the E-box binding transcription factors Zinc finger E-box-binding homeobox 1 (ZEB1) and Zinc finger E-box-binding homeobox 2 (ZEB2). About 35% of active fibroblasts are derived from EMT which is central to the development of progressive renal fibrosis. Hence, this study was designed to assess the effect of miRNA-200b on transforming growth factor-β (TGF-β1)-induced fibrotic responses in renal tubular cells. Morphologically, human kidney-2 cells transfected with miRNA-200b retained their epithelial cell characteristics when exposed to TGF-β1. miRNA-200b significantly increased E-cadherin (P < 0.001) and reduced fibronectin mRNA and protein expression (both P < 0.01) independent of phospho-Smad2/3 and phospho-p38 and p42/44 signaling. Increased E-cadherin expression was associated with decreased expression of ZEB1 and ZEB2 and repression of fibronectin was mediated through direct targeting of the fibronectin mRNA, demonstrated using pMIR luciferase reporter assay and site-directed mutagenesis. These results suggest that miRNA-200b suppresses TGF-β1-induced EMT via inhibition of ZEB1 and ZEB2 and the extracellular matrix protein fibronectin by directing targeting of its 3'UTR mRNA, independent of pathways directly involved in TGF-β1 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app