IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of histone deacetylase inhibitor on extracellular matrix production in human nasal polyp organ cultures.

BACKGROUND: Nasal polyposis is associated with a chronic inflammatory condition of the sinonasal mucosa and involves myofibroblast differentiation and extracellular matrix (ECM) accumulation. Epigenetic modulation by histone deacetylase (HDAC) inhibitors including trichostatin A (TSA) has been reported to have inhibitory effects on myofibroblast differentiation in lung and renal fibroblasts. The purpose of this study was to investigate the inhibitory effect of TSA on myofibroblast differentiation and ECM production in nasal polyp organ cultures.

METHODS: Nasal polyp tissues from 18 patients were acquired during endoscopic sinus surgery. After organ culture, nasal polyps were stimulated with TGF-beta1 and then treated with TSA. Alpha-smooth muscle actin (α-SMA), fibronectin, and collagen type I expression levels were examined by reverse transcription-polymerase chain reaction (PCR), real-time PCR, Western blot, and immunofluorescent staining. HDAC2, HDAC4, and acetylated H4 expression levels were assayed by Western blot. Cytotoxicity was analyzed by the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay.

RESULTS: The expression levels of α-SMA, fibronectin, and collagen type 1 were increased in nasal polyp after transforming growth factor (TGF) beta1 treatment. TSA-inhibited TGF-beta1 induced these gene and protein expression levels. Furthermore, TSA suppressed protein expression levels of HDAC2 and HDAC4. However, TSA induced hyperacetylation of histones H4. Treatment with TGF-beta1 with or without TSA did not have cytotoxic effect.

CONCLUSION: These findings provide novel insights into the epigenetic regulation in myofibroblast differentiation and ECM production of nasal polyp. TSA could be a candidate of a therapeutic agent for reversing the TGF-beta1-induced ECM synthesis that leads to nasal polyp development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app