Chemopreventive effect of a novel oleanane triterpenoid in a chemically induced rodent model of breast cancer

Anupam Bishayee, Animesh Mandal, Roslin J Thoppil, Altaf S Darvesh, Deepak Bhatia
International Journal of Cancer. Journal International du Cancer 2013 September 1, 133 (5): 1054-63
Breast cancer represents one of the most frequently diagnosed cancers and predominant causes of death in women worldwide. The value of preventive therapy to limit the devastating impact of breast cancer is well established. Various plant triterpenoids and their synthetic analogs have shown significant promise as potent chemopreventive agents in breast cancer. The current study was initiated to investigate mechanism-based chemopreventive potential of a novel synthetic oleanane triterpenoid (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary carcinogenesis, an experimental rodent tumor model that closely resembles human mammary cancer. Rats were orally administered with AMR-Me (0.8, 1.2 and 1.6 mg/kg) three times per week for 18 weeks. Following two weeks of AMR-Me treatment, mammary carcinogenesis was initiated by oral administration of DMBA (50 mg/kg body weight). At the end of the study (16 weeks following DMBA exposure), AMR-Me exhibited a striking inhibition of DMBA-induced mammary tumor incidence, total tumor burden, average tumor weight and reversed histopathological alterations without toxicity. AMR-Me dose-dependently suppressed abnormal cell proliferation, induced apoptosis, up-regulated pro-apoptotic protein Bax and down-regulated antiapoptotic protein Bcl-2 in mammary tumors. AMR-Me upregulated the transcriptional levels of Bax, Bad, caspase-3, caspase-7 and poly(ADP-ribose) polymerase and down-regulated Bcl-2. These results clearly demonstrate for the first time that novel triterpenoid AMR-Me exerts chemopreventive efficacy in the classical DMBA model of breast cancer by suppressing abnormal cell proliferation and inducing apoptosis mediated through mitochondrial pro-apoptotic mechanisms. AMR-Me could be developed as a chemopreventive drug to reduce the risk of human breast cancer that remains a devastating disease.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"