JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Short hairpin RNA targeting FOXQ1 inhibits invasion and metastasis via the reversal of epithelial-mesenchymal transition in bladder cancer.

The epithelial-mesenchymal transition (EMT) promotes cancer invasion and metastasis, however, the integrative mechanisms that coordinate the process are incompletely understood. In this study, we defined a pivotal functional role for the Forkhead transcription factor FOXQ1 in regulating EMT in bladder cancer. We initially investigated the expression of FOXQ1, TGF-β1 and EMT biomarkers E-cadherin, Vimentin in 65 cases of bladder transitional cell carcinoma (BTCC) specimens by reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry. Search results indicated that FOXQ1 expression was inversely correlated to E-cadherin, but positively to TGF-β1 and Vimentin in patients with BTCC (P<0.05). Furthermore, we aimed to construct short hairpin RNA (shRNA) expression plasmids against the FOXQ1 gene and transfect shRNAs into high metastatic potential human bladder cancer T24 cells with Lipofectamine 2000. RNAi-mediated suppression of FOXQ1 expression reversed the EMT process accompanied by upregulation of E-cadherin, as well as a loss expression of Vimentin in highly invasive T24 cells (P<0.05). The inhibition of FOXQ1 expression with shRNA vector also led T24 cells to acquire an epithelial cobblestone phenotype, significantly reduced motility and subsequent invasiveness of bladder cancer cells (P<0.05). In conclusion that FOXQ1 may be a novel EMT-inducing transcription factor through controlling the expression of E-cadherin and aggressiveness of cancer cells and targeting the transcription factor FOXQ1 could hence serve as a novel therapeutic strategy for cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app