Add like
Add dislike
Add to saved papers

Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression.

FEBS Journal 2013 April
Long noncoding RNAs have been shown to have important regulatory roles in cancer biology, and long noncoding RNA 19 (H19) is essential for human tumor growth. However, little is known about how abnormal expression of H19 contributes to bladder cancer cell proliferation. In this study, we first evaluated the expression of H19 in bladder cancer tissues by real-time PCR, and defined the biological functions. We found that H19 expression levels were remarkably increased in bladder cancer tissues as compared with adjacent normal control tissue, and forced expression of H19 promoted bladder cancer cell proliferation in vitro. Inhibitor of DNA binding/differentiation 2 (ID2) expression levels were upregulated in bladder cancer tissues and in bladder cancer cells. A significant positive correlation was observed between H19 levels and ID2 levels in vivo. We further demonstrated that overexpression of H19 resulted in a significant increase in the expression of ID2, whereas H19 knockdown decreased ID2 expression in vitro. Gain-of-function and loss-of-function studies demonstrated that upregulated H19 increased bladder cancer cell proliferation by increasing ID2 expression. In conclusion, upregulated H19 increases bladder cancer growth by regulating ID2 expression, and thus may be helpful in the development of effective treatment strategies for bladder cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app