JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Donor-linked di(perylene bisimide)s: arrays exhibiting fast electron transfer for photosynthesis mimics.

The first example of donor-linked di(perylene bisimide)s is reported. UV-vis absorption spectra of these newly synthesized dyads showed intense absorption across the entire visible region, demonstrating their excellent light-harvesting activities. The severe fluorescence quenching event probed by steady-state fluorescence spectroscopy and the free-energy calculations suggested the possibility of electron transfer (ET) in these arrays upon photoexcitation. Further femtosecond transient absorption spectra clarified that the fluorescence quenching was due to fast intramolecular ET. The rate of the charge separation (CS) was found to be as high as 10(12) s(-1) in CH(2)Cl(2). It was suggested that the large ET driving forces, strong donor-acceptor electronic coupling, and relatively small reorganization energy of diPBI accounted for the rapid ET process in a synergic manner. The fate of the generated radical ion pair depended on the solvent used. Rapid charge recombination to ground state occurred for the dyads in polar CH(2)Cl(2) and for diPBI-TPA in nonpolar toluene. However, sufficient (3)diPBI* population was attained via efficient spin-orbit coupled intersystem crossing from the charge-separated state for diPBI-PdTPP in toluene. These photophysical properties are interpreted as the cooperation between thermodynamic feasibility and kinetic manipulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app