Donor-linked di(perylene bisimide)s: arrays exhibiting fast electron transfer for photosynthesis mimics

Yishi Wu, Yonggang Zhen, Zhaohui Wang, Hongbing Fu
Journal of Physical Chemistry. A 2013 February 28, 117 (8): 1712-20
The first example of donor-linked di(perylene bisimide)s is reported. UV-vis absorption spectra of these newly synthesized dyads showed intense absorption across the entire visible region, demonstrating their excellent light-harvesting activities. The severe fluorescence quenching event probed by steady-state fluorescence spectroscopy and the free-energy calculations suggested the possibility of electron transfer (ET) in these arrays upon photoexcitation. Further femtosecond transient absorption spectra clarified that the fluorescence quenching was due to fast intramolecular ET. The rate of the charge separation (CS) was found to be as high as 10(12) s(-1) in CH(2)Cl(2). It was suggested that the large ET driving forces, strong donor-acceptor electronic coupling, and relatively small reorganization energy of diPBI accounted for the rapid ET process in a synergic manner. The fate of the generated radical ion pair depended on the solvent used. Rapid charge recombination to ground state occurred for the dyads in polar CH(2)Cl(2) and for diPBI-TPA in nonpolar toluene. However, sufficient (3)diPBI* population was attained via efficient spin-orbit coupled intersystem crossing from the charge-separated state for diPBI-PdTPP in toluene. These photophysical properties are interpreted as the cooperation between thermodynamic feasibility and kinetic manipulation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"