Add like
Add dislike
Add to saved papers

The α7β0 isoform of the complement regulator C4b-binding protein induces a semimature, anti-inflammatory state in dendritic cells.

Journal of Immunology 2013 March 16
The classical pathway complement regulator C4b-binding protein (C4BP) is composed of two polypeptides (α- and β-chains), which form three plasma oligomers with different subunit compositions (α7β1, α7β0, and α6β1). We show in this article that the C4BP α7β0 isoform (hereafter called C4BP[β(-)] [C4BP lacking the β-chain]), overexpressed under acute-phase conditions, induces a semimature, tolerogenic state on human monocyte-derived dendritic cells (DCs) activated by a proinflammatory stimulus. C4BP isoforms containing β-chain (α7β1 and α6β1; C4BP[β(+)]) neither interfered with the normal maturation of DCs nor competed with C4BP(β(-)) activity on these cells. Immature DCs (iDCs) treated with C4BP(β(-)) retained high endocytic activity, but, upon LPS treatment, they did not upregulate surface expression of CD83, CD80, and CD86. Transcriptional profiling of these semimature DCs revealed that treatment with C4BP(β(-)) prevented the induction of IDO and BIC-1, whereas TGF-β1 expression was maintained to the level of iDCs. C4BP(β(-))-treated DCs were also unable to release proinflammatory Th1 cytokines (IL-12, TNF-α, IFN-γ, IL-6, IL-8) and, conversely, increased IL-10 secretion. They prevented surface CCR7 overexpression and, accordingly, displayed reduced chemotaxis, being morphologically indistinguishable from iDCs. Moreover, C4BP(β(-))-treated DCs failed to enhance allogeneic T cell proliferation, impairing IFN-γ production in these cells and, conversely, promoting CD4(+)CD127(low/neg)CD25(high)Foxp3(+) T cells. Deletion mutant analysis revealed that the complement control protein-6 domain of the α-chain is necessary for the tolerogenic activity of C4BP(β(-)). Our data demonstrate a novel anti-inflammatory and immunomodulatory function of the complement regulator C4BP, suggesting a relevant role of the acute-phase C4BP(β(-)) isoform in a number of pathophysiological conditions and potential applications in autoimmunity and transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app