JOURNAL ARTICLE

Cross-reactivity studies and predictive modeling of "Bath Salts" and other amphetamine-type stimulants with amphetamine screening immunoassays

M Petrie, K L Lynch, S Ekins, J S Chang, R J Goetz, A H B Wu, M D Krasowski
Clinical Toxicology 2013, 51 (2): 83-91
23387345

INTRODUCTION: The increasing abuse of amphetamine-like compounds presents a challenge for clinicians and clinical laboratories. Although these compounds may be identified by mass spectrometry-based assays, most clinical laboratories use amphetamine immunoassays that have unknown cross-reactivity with novel amphetamine-like drugs. To date, there has been a little systematic study of amphetamine immunoassay cross-reactivity with structurally diverse amphetamine-like drugs or of computational tools to predict cross-reactivity.

METHODS: Cross-reactivities of 42 amphetamines and amphetamine-like drugs with three amphetamines screening immunoassays (AxSYM(®) Amphetamine/Methamphetamine II, CEDIA(®) amphetamine/Ecstasy, and EMIT(®) II Plus Amphetamines) were determined. Two- and three-dimensional molecular similarity and modeling approaches were evaluated for the ability to predict cross-reactivity using receiver-operator characteristic curve analysis.

RESULTS: Overall, 34%-46% of the drugs tested positive on the immunoassay screens using a concentration of 20,000 ng/mL. The three immunoassays showed differential detection of the various classes of amphetamine-like drugs. Only the CEDIA assay detected piperazines well, while only the EMIT assay cross-reacted with the 2C class. All three immunoassays detected 4-substituted amphetamines. For the AxSYM and EMIT assays, two-dimensional molecular similarity methods that combined similarity to amphetamine/methamphetamine and 3,4-methylenedioxymethampetamine most accurately predicted cross-reactivity. For the CEDIA assay, three-dimensional pharmacophore methods performed best in predicting cross-reactivity. Using the best performing models, cross-reactivities of an additional 261 amphetamine-like compounds were predicted.

CONCLUSIONS: Existing amphetamines immunoassays unevenly detect amphetamine-like drugs, particularly in the 2C, piperazine, and β-keto classes. Computational similarity methods perform well in predicting cross-reactivity and can help prioritize testing of additional compounds in the future.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23387345
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"