JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world.

Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites with a long history of investigation. Although the ecophysiological functions of most BIAs are unknown, the medicinal properties of many compounds have been exploited for centuries. These include the narcotic analgesics codeine and morphine, the antimicrobial agents sanguinarine and berberine, and the antitussive and anticancer drug noscapine. BIA biosynthesis involves a restricted number of enzyme types that catalyze landmark coupling reactions and subsequent functional group modifications. A pathogenesis-related (PR)10/Bet v1 'Pictet-Spenglerase', several O-methyl-, N-methyl- and O-acetyltransferases, cytochromes P450, FAD-dependent oxidases, non-heme dioxygenases and NADPH-dependent reductases have been implicated in the multistep pathways leading to structurally diverse alkaloids. A small number of plant species, including opium poppy (Papaver somniferum) and other members of the Ranunculales, have emerged as model systems to study BIA metabolism. The expansion of resources to include a wider range of plant species is creating an opportunity to investigate previously uncharacterized BIA pathways. Contemporary knowledge of BIA metabolism reflects over a century of research coupled with the development of key innovations such as radioactive tracing, enzyme isolation and molecular cloning, and functional genomics approaches such as virus-induced gene silencing. Recently, the emergence of transcriptomics, proteomics and metabolomics has expedited the discovery of new BIA biosynthetic genes. The growing repository of BIA biosynthetic genes is providing the parts required to apply emerging synthetic biology platforms to the development of production systems in microbes as an alternative to plants as a commecial source of valuable BIAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app