Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Iridium(III) emitters based on 1,4-disubstituted-1H-1,2,3-triazoles as cyclometalating ligand: synthesis, characterization, and electroluminescent devices.

Inorganic Chemistry 2013 Februrary 19
A series of blue and blue-green emitters based on neutral bis- and tris-cyclometalated Ir(III) complexes with 1-benzyl-4-(2,6-difluorophenyl)-1H-1,2,3-triazole (dfptrBn) as cyclometalating ligand is reported. The bis-cyclometalated complexes of the type [Ir(dfptrBn)(2)(L(^)X)] with different ancillary ligands, L(^)X = picolinate (pic) (2) or 2-(5-(perfluorophenyl)-2H-1,2,4-triazol-3-yl)pyridine (pytrF(5)) (3), are described and their photophysical properties compared with the analogous complexes containing the archetypal 2-(2,4-difluorophenyl)pyridinato (dfppy) as cyclometaled ligand (C(^)N). Complex 2 exhibits a marked solvatochromic behavior, from 475 nm in toluene to 534 nm in formamide, due to the strong MLCT character of its emissive excited state. Complex 3 displays a true-blue emission, narrower in the visible part than FIrpic. In addition, the homoleptic complex [Ir(dfprBn)(3)] (4) and the heteroleptic compounds with mixed arylpyridine/aryltriazole ligands, [Ir(dfptrBn)(2)(C(^)N)] (C(^)N = 2-phenylpyridinato (ppy) (5) or dfppy (6)), have been synthesized and fully characterized. The facial (fac) complex fac-4 is emissive at 77 K showing a deep-blue emission, but it is not luminescent in solution at room temperature similarly to their phenylpyrazole counterparts. However, the fac isomers, fac-5 and fac-6, are highly emissive in solution and thin films, reaching emission quantum yields of 76%, with emission colors in the blue to blue-green region. The photophysical properties for all complexes have been rationalized by means of quantum-chemical calculations. In addition, we constructed electroluminescent devices, organic light-emitting diodes (OLEDs) by sublimation of fac-6, and by solution processed polymer-based devices (PLEDs) using complexes fac-5 or fac-6 as dopants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app