Add like
Add dislike
Add to saved papers

In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation.

Manual Therapy 2013 August
The cervical spine exhibits considerable mobility, especially in axial rotation. Axial rotation exerts stress on anatomical structures, such as the vertebral artery which is commonly assessed during clinical examination. The literature is rather sparse concerning the in vivo three-dimensional segmental kinematics of the cervical spine. This study aimed at investigating the three-dimensional kinematics of the cervical spine during maximal passive head rotation with special emphasis on coupled motion. Twenty healthy volunteers participated in this study. Low-dose CT scans were conducted in neutral and in maximum axial rotation positions. Each separated vertebra was segmented semi automatically in these two positions. The finite helical-axis method was used to describe 3D motion between discrete positions. The mean (±SD) maximum magnitude of axial rotation between C0 and C1 was 2.5 ± 1.0° coupled with lateral flexion to the opposite side (5.0 ± 3.0°) and extension (12.0 ± 4.5°). At the C1-C2 level, the mean axial rotation was 37.5 ± 6.0° associated with lateral flexion to the opposite side (2.5 ± 6.0°) and extension (4.0 ± 6.0°). For the lower levels, axial rotation was found to be maximal at C4-C5 level (5.5 ± 1.0°) coupled with lateral flexion to the same side (-4.0 ± 2.5°). Extension was associated at levels C2-C3, C3-C4 and C4-C5, whereas flexion occurred between C5-C6 and C6-C7. Coupled lateral flexion occurred to the opposite side at the upper cervical spine and to the same side at the lower cervical spine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app