Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension.

Urology 2013 Februrary
OBJECTIVE: To investigate the differences in the histopathologic and functional characteristics of 3 rat models of stress urinary incontinence.

MATERIALS AND METHODS: A total of 24 female, 10-week-old, Sprague-Dawley rats were randomly divided into 4 groups: normal, electrocauterization, pudendal denervation, and vaginal distension. At 2 weeks after surgery, the leak point pressure was measured to detect urinary leakage. Urethral tissue samples were collected for histological examination.

RESULTS: The smooth muscle content in the electrocauterization group was significantly decreased compared with that in all other groups, indicating that electrocauterization caused the most severe injury. A blood vessel marker, von Willebrand factor, was co-stained with α-smooth muscle actin to detect the blood vessel distribution. No significant differences were seen in von Willebrand factor expression among the 4 groups, other than in the electrocauterization group, in which we could hardly observe blood vessel expression. Protein gene product 9.5 staining was used to detect nerve fibers and cells. Protein gene product 9.5 expression was significantly lower in all the treatment groups compared with that in the normal group (P <.05), in particular, in the electrocauterization and pudendal denervation groups (P <.01). The leak point pressure was significantly lower in the electrocauterization (P <.01), pudendal denervation (P <.01), and vaginal distension (P <.05) groups than in the normal group.

CONCLUSION: The vaginal distension model should mainly be used as the myogenic damage stress urinary incontinence animal model; the pudendal denervation model mainly as the neurogenic damage stress urinary incontinence animal model; and the electrocauterization model as the vasculogenic, neurogenic, and myogenic damage animal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app