JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Unraveling the interfacial electron transfer dynamics of electroactive microbial biofilms using surface-enhanced Raman spectroscopy.

ChemSusChem 2013 March
The electron transfer (ET) processes of electroactive microbial biofilms have been investigated by combining electrochemistry and time-resolved surface-enhanced resonance Raman (TR-SERR) spectroscopy. This experimental approach provides selective information on the ET process across the biofilm-electrode interface by monitoring the redox-state changes of heme cofactors in outer membrane cytochromes (OMCs) that are in close vicinity (i.e., within 7 nm) to the Ag working electrode. The rate constant for heterogeneous ET of the surface-confined OMCs (sc-OMCs) of a mixed culture derived electroactive microbial biofilm has been determined to be 0.03 s(-1) . In contrast, according to kinetic simulations the ET between sc-OMCs and their redox partners, embedded within the biofilm, is a much faster process with an estimated rate constant greater than 1.2 s(-1) . The slow rate of heterogeneous ET and the lack of high-spin species in the SERR spectra rule out the direct attachment of the sc-OMCs to the electrode surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app