JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation.

Biomaterials 2013 April
Mesoporous silica-encapsulated gold nanorods (GNRs@mSiO(2)) have great potential both in photothermal therapy and drug delivery. In this paper, we firstly developed GNRs@mSiO(2) as a synergistic therapy tool for delivery heat and drug to the tumorigenic region. We studied the ablation of tumor both in vitro and in vivo by the combination of photothermal therapy and chemotherapy using doxorubicin (DOX)-loaded GNRs@mSiO(2). Significantly greater cell killing was observed when A549 cells incubated with DOX-loaded GNRs@mSiO(2) were irradiated with near-infrared (NIR) illumination, attributable to both GNRs@mSiO(2)-mediated photothermal ablation and cytotoxicity of light-triggered DOX release. We then performed in vivo therapy studies and observed a promising tumor treatment. Compared with chemotherapy or photothermal treatment alone, the combined treatment showed a synergistic effect, resulting in higher therapeutic efficacy. Furthermore, the lower systematic toxicity of GNRs@mSiO(2) has been validated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app