Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induced spiral motion in cardiac tissue due to alternans.

Spiral wave meander is a typical feature observed in cardiac tissue and in excitable media in general. Here, we show for a simple model of excitable cardiac tissue that a transition to alternans--a beat-to-beat temporal alternation in the duration of cardiac excitation--can also induce a transition in the spiral core motion that is related to the presence of synchronization defect lines (SDLs) or nodal lines. While this is similar to what has been predicted and indeed observed for complex-oscillatory media close to onset, we find important qualitative differences. For example, single straight SDLs rotate and induce an additional nonresonant frequency characterizing the core motion of the attached spiral. We analyze this behavior quantitatively as a function of the steepness of the restitution curve and show that the velocity and the directionality of the core motion vary monotonically with the control parameter. Our findings agree with recent observations in rat heart tissue cultures indicating that the described behavior is of rather general nature. In particular, it could play an important role in the context of potentially life-threatening cardiac arrhythmias such as fibrillation for which alternans and spiral waves are known precursors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app