Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Decoupling the influence of systemic variables in the peripheral and cerebral haemodynamics during ECMO procedure by means of oblique and orthogonal subspace projections.

Extra-Corporeal Membrane Oxygenation (ECMO) is a life support system for infants and children with cardio-respiratory failure. During ECMO it is possible to have unstable cerebral haemodynamics, due to strong oscillations in the systemic variables, among other factors, which may lead to brain damage in the patients. Therefore, monitoring the coupling between cerebral haemodynamics and systemic signals might alert us of possible imminent brain damage. In this study we explore the use of orthogonal and oblique subspace projections in the decoupling of these variables, by assessing the ratio between the projections of the haemodynamic variables, onto the subspace spanned by the systemic variables, and the original signals. The coupling of these two systems may differ as different protection mechanisms protect the peripheral system and the brain. Subspace projection was able to decompose the heamodynamic variables as a sum of components related to each systemic variable, separately. As expected, stronger coupling was found between the peripheral haemodynamic and the systemic variables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app