COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors.

The purpose of this research was to compare different adaptive algorithms in terms of their ability to determine temporal gait parameters based on data acquired from inertial measurement units (IMUs). Eight subjects performed 25 walking trials over a force plate under five different conditions; normal, fast, slow, simulated stiff ankle and simulated stiff knee walking. Data from IMUs worn on the shanks and on the feet were used to identify temporal gait features using three different adaptive algorithms (Green, Selles & Sabatini). Each method's ability to estimate temporal events was compared to the gold standard force plate method for stance time (Greene, r= .990, Selles, r= 0.865, Sabatini, r= 0.980) and double support time (Greene, r= .837, Selles, r= .583, Sabatini, r= .745). The Greene method of estimating gait events from inertial sensor data resulted in the most accurate stance and double support times.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app