EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A human papilloma virus testing algorithm comprising a combination of the L1 broad-spectrum SPF10 PCR assay and a novel E6 high-risk multiplex type-specific genotyping PCR assay.

Human papillomavirus (HPV) epidemiological and vaccine studies require highly sensitive HPV detection and genotyping systems. To improve HPV detection by PCR, the broad-spectrum L1-based SPF10 PCR DNA enzyme immunoassay (DEIA) LiPA system and a novel E6-based multiplex type-specific system (MPTS123) that uses Luminex xMAP technology were combined into a new testing algorithm. To evaluate this algorithm, cervical swabs (n = 860) and cervical biopsy specimens (n = 355) were tested, with a focus on HPV types detected by the MPTS123 assay (types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 6, and 11). Among the HPV-positive samples, identifications of individual HPV genotypes were compared. When all MPTS123 targeted genotypes were considered together, good overall agreement was found (κ = 0.801, 95% confidence interval [CI], 0.784 to 0.818) with identification by SPF10 LiPA, but significantly more genotypes (P < 0.0001) were identified by the MPTS123 PCR Luminex assay, especially for HPV types 16, 35, 39, 45, 58, and 59. An alternative type-specific assay was evaluated that is based on detection of a limited number of HPV genotypes by type-specific PCR and a reverse hybridization assay (MPTS12 RHA). This assay showed results similar to those of the expanded MPTS123 Luminex assay. These results confirm the fact that broad-spectrum PCRs are hampered by type competition when multiple HPV genotypes are present in the same sample. Therefore, a testing algorithm combining the broad-spectrum PCR and a range of type-specific PCRs can offer a highly accurate method for the analysis of HPV infections and diminish the rate of false-negative results and may be particularly useful for epidemiological and vaccine studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app