COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS.

The development of tyrosine kinase inhibitor treatments has made it important to test cancer patients for clinically significant gene mutations that influence the benefit of treatment. Targeted next-generation sequencing (NGS) provides a promising method for diagnostic purposes by enabling the simultaneous detection of multiple mutations in various genes in a single test. The aim of our study was to screen EGFR, KRAS, and BRAF mutations by targeted NGS and commonly used real-time polymerase chain reaction (PCR) methods to evaluate the feasibility of targeted NGS for the detection of the mutations. Furthermore, we aimed to identify potential novel mutations by targeted NGS. We analyzed formalin-fixed, paraffin-embedded (FFPE) tumor tissue specimens from 81 non-small cell lung carcinoma patients. We observed a significant concordance (from 96.3 to 100%) of the EGFR, KRAS, and BRAF mutation detection results between targeted NGS and real-time PCR. Moreover, targeted NGS revealed seven nonsynonymous single-nucleotide variations and one insertion-deletion variation in EGFR not detectable by the real-time PCR methods. The potential clinical significance of these variants requires elucidation in future studies. Our results support the use of targeted NGS in the screening of EGFR, KRAS, and BRAF mutations in FFPE tissue material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app