Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model.

Pain 2013 March
Bone cancer pain has a strong impact on the quality of life of patients, but is difficult to treat. Better understanding of the pathogenic mechanisms underlying bone cancer pain will likely lead to the development of more effective treatments. In the present study, we investigated whether inhibition of KCNQ/M channels contributed to the hyperexcitability of primary sensory neurons and to the pathogenesis of bone cancer pain. By using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumour cells, we documented a prominent decrease in expression of KCNQ2 and KCNQ3 proteins and a reduction of M-current density in small-sized dorsal root ganglia (DRG) neurons, which were associated with enhanced excitability of these DRG neurons and the hyperalgesic behaviours in bone cancer rats. Coincidently, we found that inhibition of KCNQ/M channels with XE-991 caused a robust increase in the excitability of small-sized DRG neurons and produced an obvious mechanical allodynia in normal rats. On the contrary, activation of the KCNQ/M channels with retigabine not only inhibited the hyperexcitability of these small DRG neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in bone cancer rats, and all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. These results suggest that repression of KCNQ/M channels leads to the hyperexcitability of primary sensory neurons, which in turn causes bone cancer pain. Thus, suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of bone cancer pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app