JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selective estrogen receptor modulation attenuates proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status.

Proteinuria is an independent risk factor for progressive renal diseases because it initiates or aggravates tubulointerstitial injury. Clinically, females are less susceptible to progression of chronic kidney disease; however, the mechanisms underlying the renoprotective effect of estrogen receptor stimulation have yet to be clarified. Recently, inflammasome-dependent inflammatory responses were shown to be triggered by free fatty acids, and mitochondria-derived reactive oxygen species were shown to be required for this response. Albumin-bound free fatty acids trigger inflammasome activation through mitochondrial reactive oxygen species production in human proximal tubule epithelial cells in vitro, an effect inhibited by raloxifene. Female ICR-derived glomerulonephritic mice (mice with hereditary nephritic syndrome) were ovariectomized and treated with raloxifene, a selective estrogen receptor modulator. Ovariectomized mice showed activation of tubular inflammasomes and elevated levels of inflammasome-dependent cytokines. Raloxifene attenuated these changes ameliorating tubulointerstitial damage, reduced production of reactive oxygen species, averted morphological changes, and improved respiratory function in mitochondria. The expression of genes that encode rate-limiting enzymes in the mitochondrial β-oxidation pathway was reduced by ovariectomy but enhanced by raloxifene. Thus, inflammasomes may be a novel and promising therapeutic target for proteinuria-induced renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app