Comparative Study
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app