JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

3-methoxyapigenin modulates β-catenin stability and inhibits Wnt/β-catenin signaling in Jurkat leukemic cells.

Life Sciences 2013 April 10
AIMS: Aberrant activation of Wnt/β-catenin signaling has been implicated in carcinogenesis. Identification of inhibitors of this pathway may help in cancer therapy. The purpose of this study is to investigate the inhibitory effect of 3-methoxyapigenin (3-MA) with β-catenin/LEF reporter system. The anti-cancer mechanisms in Jurkat leukemic cells were also examined.

MAIN METHODS: HEK 293-TOP/FOP reporter cells were used to determine the inhibitory effect of 3-MA on Wnt/β-catenin pathway. We also used Jurkat-TOP reporter cells to confirm the inhibitory effect and the action mechanisms of 3-MA. Target genes and cell proliferation were analyzed by RT-PCR and (3)H-thymidine uptake assay. The effects of 3-MA on β-catenin phosphorylation was determined by Western blotting and by in vitro kinase assays. β-catenin translocation and its transactivation were verified by cellular fractionation and EMSA.

KEY FINDINGS: 3-MA inhibited Wnt-3A-induced luciferase activity in the HEK 293-TOP/FOP reporter system. Western blotting analysis showed that phosphorylation sites in β-catenin by glycogen synthase kinase-3β (GSK-3β) and casein kinase 2 (CK2) were inhibited by 3-MA in Jurkat. In parallel, in vitro kinase assays verified this effect. As a result, total β-catenin turnover remained balanced by this dual inhibitory effect of 3-MA. Although the β-catenin protein level remained unchanged, 3-MA did inhibit β-catenin translocation. Finally, we found that the β-catenin/LEF transcriptional activity, expression of c-myc and cyclin-D3, and cell proliferation were inhibited by 3-MA.

SIGNIFICANCE: 3-MA modulates the turnover of β-catenin and suppresses the Wnt/β-catenin signaling pathway through inhibition of β-catenin translocation. We suggested that 3-MA has potential as an anti-cancer drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app