Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.

Oct4-Sox2-Nanog transcriptional networks are critical for the maintenance of embryonic stem (ES) cell self-renewal and induction of pluripotency. However, in transcription factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), Nanog is initially dispensable and Oct4 remains the sole factor that could not be substituted/omitted. Here, we show that mouse fibroblasts could be reprogrammed into iPSCs by Nanog and Bmi1, which replaces Sox2, Klf4, and c-Myc, in the absence of Oct4. Furthermore, we show that in the presence of shh agonists (oxysterol and purmophamine), which replaces the function of Bmi1, a single transcription factor, Nanog is sufficient to reprogram mouse fibroblasts into iPSCs. Nanog-induced iPSCs resemble mESCs in terms of morphology, global gene expression profiles, epigenetic status and pluripotency both in vitro and in vivo. These findings support that Nanog can replace the Oct4 for the somatic cell reprogramming and underlie the mechanisms of Nanog in reprogramming process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app