JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Glucose signalling positively regulates aliphatic glucosinolate biosynthesis.

The effects of glucose on aliphatic glucosinolate biosynthesis in Arabidopsis thaliana were investigated in this study by using mutants related to aliphatic glucosinolate biosynthesis and regulation, as well as glucose signalling. The results showed that glucose significantly increased the contents of individual and total aliphatic glucosinolates. Expression of MYB28 and MYB29, two key transcription factors in aliphatic glucosinolate biosynthesis, was also induced by glucose. Consistently, the increased accumulation of aliphatic glucosinolates and the up-regulated expression of CYP79F1 and CYP79F2 induced by glucose disappeared in the double mutant myb28myb29. MYB28 and MYB29 synergistically functioned in the glucose-induced biosynthesis of aliphatic glucosinolates, but MYB28 was predominant over MYB29. Interestingly, the content of total aliphatic glucosinolates and the expression level of MYB28 and MYB29 were substantially reduced in the glucose insensitive mutant gin2-1 and the ABA insensitive 5 (abi5-7) mutant compared with the wild type. In addition, total aliphatic glucosinolates accumulated much less in another sugar-insensitive RGS1 (regulator of G-protein signaling 1) mutant (rgs1-2) than in the wild type. These results suggest that glucose-promoted aliphatic glucosinolate biosynthesis is regulated by HXK1- and/or RGS1-mediated signalling via transcription factors, MYB28, MYB29, and ABI5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app