Add like
Add dislike
Add to saved papers

Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice.

Preventive effects of ellagic acid against doxorubicin-induced cardiac oxidative, inflammatory and apoptotic stress were examined. This agent at 0.25, 0.5 or 1% was added in feed and supplied to mice for 8 weeks, and followed by doxorubicin treatment. Ellagic acid intake increased its deposit in heart. Pre-intake of this compound at 0.5 and 1% significantly attenuated doxorubicin caused increase in plasma creatine phosphokinase activity. Doxorubicin treatment decreased glutathione content, increased reactive oxygen species (ROS), malonyldialdehyde (MDA), interleukin (IL)-6, IL-10, monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels, declined glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, and enhanced xanthine oxidases (XO) activity in heart. Ellagic acid intake dose-dependently reserved glutathione content, lowered ROS and MDA levels, and reduced XO activity. This compound at 0.5 and 1% retained GPX and SOD activities, and decreased cytokines in heart. Doxorubicin treatment raised cardiac activity and protein production of caspase-3, nuclear factor kappa B (NF-κB) p50 and p65. Ellagic acid dose-dependently lowered caspase-3 activity and cleaved caspase-3 formation, and at 0.5 and 1% declined activity and protein level of NF-κB. Doxorubicin treatment also up-regulated cardiac expression of p-p38, p-ERK 1/2 and p-JNK, and ellagic acid at 0.5 and 1% suppressed p-p38 expression and at 1% down-regulated p-ERK 1/2 expression. These findings suggest that ellagic acid is a potent cardiac protective agent against doxorubicin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app