JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The novel phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor, BEZ235, circumvents erlotinib resistance of epidermal growth factor receptor mutant lung cancer cells triggered by hepatocyte growth factor.

Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, is a critical problem in the management of patients with EGFR mutant lung cancer. Several mechanisms have been reported involved in this acquired resistance, including hepatocyte growth factor (HGF) activation of an alternative pathway. PI3K and mTOR are downstream molecules of receptor tyrosine kinases, such as EGFR and Met, and are thought to be ideal targets for controlling various tumor types. We assessed whether BEZ235, a dual inhibitor of PI3K and mTOR, could overcome the EGFR-TKI resistance induced by HGF in an EGFR mutant lung cancer model. Exogenous and endogenous HGF triggered resistance to erlotinib in the PC-9 and HCC827, EGFR mutant lung cancer cell lines. BEZ235 alone inhibited the viability of PC-9 and HCC827 cells in vitro, irrespective of the presence or the absence of HGF. Using a xenograft model of severe combined immunodeficient mice with HGF-gene-transfected PC-9 cells (PC-9/HGF), we found that BEZ235 inhibited tumor growth, whereas erlotinib did not. BEZ235 monotherapy also inhibited the phosphorylation of Akt and p70S6K/S6RP, downstream molecules of PI3K and mTOR, respectively, as well as suppressing tumor-cell proliferation and angiogenesis of PC-9/HGF tumors. These results suggest that BEZ235, even as monotherapy, may be useful in managing HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app