JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine.

Oncogene 2014 January 17
Epithelial ovarian cancer (EOC) is a highly lethal gynaecological malignancy. Cisplatin is the basal chemotherapeutic agent used to treat EOC, but resistance to cisplatin leads to chemotherapy failure. MicroRNAs are a novel class of regulators that function by controlling gene expression at the post-transcriptional level. Several recent reports have identified some microRNAs that are related to chemotherapy sensitivity. In this study, we found two microRNAs miR-152 and miR-185 that were significantly downregulated in the cisplatin-resistant ovarian cell lines SKOV3/DDP and A2780/DDP, compared with their sensitive parent line SKOV3 and A2780, respectively. Subsequently, the roles of miR-152 and miR-185 were evaluated in vitro and in vivo. The overexpression of miR-152 or miR-185 increased cisplatin sensitivity of SKOV3/DDP and A2780/DDP cells by inhibiting proliferation and promoting apoptosis, then we further confirmed that these miRNAs functioned through suppressing DNA methyltransferase 1 (DNMT1) directly. Concordantly, CD-1/CD-1 nude mice that were injected intraperitoneally with SKOV3/DDP cells transfected with miR-152 mimics exhibited upregulated cisplatin sensitivity in vivo. Interestingly, we found that there were no significant changes in the expression of these two microRNAs after treatment with decitabine (DAC), a traditional epigenetic therapeutic agent, suggesting these miRNAs represented two new regulators independent of DAC. Finally, the survival assay in A549 and HepG2 cells revealed that the two microRNAs involved in cisplatin sensitivity were related to cell types. Our results indicated that miR-152 and miR-185 were involved in ovarian cancer cisplatin resistance in vitro and in vivo by targeting DNMT1 directly. These molecules may serve as potential epigenetic therapeutic targets in other cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app