JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Systems-based approaches toward wound healing.

Wound healing in the pediatric patient is of utmost clinical and social importance because hypertrophic scarring can have aesthetic and psychological sequelae, from early childhood to late adolescence. Wound healing is a well-orchestrated reparative response affecting the damaged tissue at the cellular, tissue, organ, and system scales. Although tremendous progress has been made toward understanding wound healing at the individual temporal and spatial scales, its effects across the scales remain severely understudied and poorly understood. Here, we discuss the critical need for systems-based computational modeling of wound healing across the scales, from short-term to long-term and from small to large. We illustrate the state of the art in systems modeling by means of three key signaling mechanisms: oxygen tension-regulating angiogenesis and revascularization; transforming growth factor-β (TGF-β) kinetics controlling collagen deposition; and mechanical stretch stimulating cellular mitosis and extracellular matrix (ECM) remodeling. The complex network of biochemical and biomechanical signaling mechanisms and the multiscale character of the healing process make systems modeling an integral tool in exploring personalized strategies for wound repair. A better mechanistic understanding of wound healing in the pediatric patient could open new avenues in treating children with skin disorders such as birth defects, skin cancer, wounds, and burn injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app