Clinical Trial, Phase II
Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fractal organization of the human T cell repertoire in health and after stem cell transplantation.

T cell repertoire diversity is generated in part by recombination of variable (V), diversity (D), and joining (J) segments in the T cell receptor β (TCR) locus. T cell clonal frequency distribution determined by high-throughput sequencing of TCR β in 10 stem cell transplantation (SCT) donors revealed a fractal, self-similar frequency distribution of unique TCR bearing clones with respect to V, D, and J segment usage in the T cell repertoire of these individuals. Further, ranking of T cell clones by frequency of gene segment usage in the observed sequences revealed an ordered distribution of dominant clones conforming to a power law, with a fractal dimension of 1.6 and 1.8 in TCR β DJ and VDJ containing clones in healthy stem cell donors. This self-similar distribution was perturbed in the recipients after SCT, with patients demonstrating a lower level of complexity in their TCR repertoire at day 100 followed by a modest improvement by 1 year post-SCT. A large shift was observed in the frequency distribution of the dominant T cell clones compared to the donor, with fewer than one third of the VDJ-containing clones shared in the top 4 ranks. In conclusion, the normal T cell repertoire is highly ordered with a TCR gene segment usage that results in a fractal self-similar motif of pattern repetition across levels of organization. Fractal analysis of high-throughput TCR β sequencing data provides a comprehensive measure of immune reconstitution after SCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app