Add like
Add dislike
Add to saved papers

Carbon isotope ratio mass spectrometry for detection of endogenous steroid use: a testing strategy.

Isotope ratio mass spectrometry (IRMS) testing is performed to determine if an atypical steroid profile is due to administration of an endogenous steroid. Androsterone (Andro) and etiocholanolone (Etio), and/or the androstanediols (5α- and 5β-androstane-3α,17β-diol) are typically analyzed by IRMS to determine the (13) C/(12) C ratio. The ratios of these target compounds are compared to the (13) C/(12) C ratio of an endogenous reference compound (ERC) such as 5β-pregnane-3α,20α-diol (Pdiol). Concentrations of Andro and Etio are high so (13) C/(12) C ratios can easily be measured in most urine samples. Despite the potentially improved sensitivity of the androstanediols for detecting the use of some testosterone formulations, additional processing steps are often required that increase labour costs and turnaround times. Since this can be problematic when performing large numbers of IRMS measurements, we established thresholds for Andro and Etio that can be used to determine the need for additional androstanediol testing. Using these criteria, 105 out of 2639 urine samples exceeded the Andro and/or Etio thresholds, with 52 of these samples being positive based on Andro and Etio IRMS testing alone. The remaining 53 urine samples had androstanediol IRMS testing performed and 3 samples were positive based on the androstanediol results. A similar strategy was used to establish a threshold for Pdiol to identify athletes with relatively (13) C-depleted values so that an alternative ERC can be used to confirm or establish a true endogenous reference value. Adoption of a similar strategy by other laboratories can significantly reduce IRMS sample processing and analysis times, thereby increasing testing capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app