JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells.

Ultrasonics 2013 March
Gold nanorods (GNRs) are being exploited for their absorption properties to improve thermal therapy. However, a key challenge is delivering sufficient concentration of GNRs to induce a therapeutic effect. In this study, ultrasound and microbubbles (USMBs) were used to enhance intracellular uptake of GNRs. AML-5 cells in suspension (0.6 mL) were exposed to ultrasound (1.3 and 1.7 MPa peak negative pressure) and definity microbubbles (1.7% v/v) for 1 min at varying GNR concentrations (0-2.5×10(11) per mL). Following ultrasound-microbubble treatment, cells were centrifuged twice and treated with an 810 nm laser at an average fluence rate of 3.6 W/cm(2) for 5 min. In addition, cells were incubated with GNRs for 12 h prior to laser treatment. Following the treatment, cell viability (V(PI)) was assessed using propidium iodide (PI) and flow cytometry. Cell viability decreased by ∼4-folds with the combined treatment of USMB+GNR+Laser (V(PI)=17%) compared to cells incubated with GNR+Laser (V(PI)=68%). This effect depended on ultrasound pressure and GNR concentration. Higher cell death was achieved at higher GNR concentration and 1.3 MPa peak negative pressure. Cell viability decreased from 92% to 29% with increasing GNR concentration from 1×10(11) to 1.5×10(11) GNR/mL. In addition, higher temperatures were observed using a thermal camera with the combined treatment (USMB+GNR+Laser) of 59±1°C compared to 54±0.9°C for cells incubated with GNRs. The combined treatment of ultrasound-microbubble and gold nanorod laser induced thermal-therapy improved treatment response of in vitro cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app