CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Infarct size determines myocardial uptake of CD34+ cells in the peri-infarct zone: results from a study of (99m)Tc-extametazime-labeled cell visualization integrated with cardiac magnetic resonance infarct imaging.

BACKGROUND: Effective progenitor cell recruitment to the ischemic injury zone is a prerequisite for any potential therapeutic effect. Cell uptake determinants in humans with recent myocardial infarction are not defined. We tested the hypothesis that myocardial uptake of autologous CD34(+) cells delivered via an intracoronary route after recent myocardial infarction is related to left ventricular (LV) ejection fraction (LVEF) and infarct size.

METHODS AND RESULTS: Thirty-one subjects (age, 36-69 years; 28 men) with primary percutaneous coronary intervention-treated anterior ST-segment-elevation myocardial infarction and significant myocardial injury (median peak troponin I, 138 ng/dL [limits, 58-356 ng/dL]) and sustained LVEF depression at ≤45% were recruited. On day 10 (days 7-12), 4.3×10(6) (0.7-9.9×10(6)) (99m)Tc-extametazime-labeled autologous bone marrow CD34(+) cells (activity, 77 MBq [45.9-86.7 MBq]) were administered transcoronarily (left anterior descending coronary artery). (99m)Tc-methoxyisobutyl isonitrile (99(m)Tc-MIBI) single-photon emission computed tomography before cell delivery showed 7 (2-11) (of 17) segments with definitely abnormal/absent perfusion. Late gadolinium-enhanced infarct core mass was 21.7 g (4.4-45.9 g), and infarct border zone mass was 29.8 g (3.9-60.2 g) (full-width at half-maximum, signal intensity thresholding algorithm). One hour after administration, 5.2% (1.7%-9.9%) of labeled cell activity localized in the myocardium (whole-body planar γ scan). Image fusion of labeled cell single-photon emission computed tomography with LV perfusion single-photon emission computed tomography or with cardiac magnetic resonance infarct imaging indicated cell uptake in the peri-infarct zone. Myocardial uptake of labeled cells activity correlated in particular with late gadolinium-enhanced infarct border zone mass (r=0.84, P<0.0001) and with peak troponin I (r=0.76, P<0.001); it also correlated with severely abnormal/absent perfusion segment number (r=0.45, P=0.008) and late gadolinium-enhanced infarct core (r=0.58 and r=0.84, P<0.0001) but not with echocardiography LVEF (r=-0.07, P=0.68) or gated single-photon emission computed tomography LVEF (r=-0.28, P=0.16). The correlation with cardiac magnetic resonance imaging-LVEF was weak (r=-0.38; P=0.04).

CONCLUSIONS: This largest human study with labeled bone marrow CD34(+) cell transcoronary transplantation after recent ST-segment-elevation myocardial infarction found that myocardial cell uptake is determined by infarct size rather than LVEF and occurs preferentially in the peri-infarct zone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app