Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suitability of autologous serum for expanding rabbit adipose-derived stem cell populations.

Adipose-derived stem cells (ASCs) are believed to have potential use for treating many illnesses. Most cells, including ASCs, are generally cultured in medium containing fetal bovine serum (FBS). However, FBS, which could induce an immune response or infection, is not recommended for clinical applications. In the present study, we evaluated the morphology, proliferation rate, and characterization of rabbit ASCs grown in medium containing autologous serum (AS) and compared these cells to ones cultured with FBS. Morphological changes were monitored by microscopy and flow cytometry. Proliferation rates were assessed with cell counting and ASC phenotypes were characterized by flow cytometry using representative surface markers (CD44 and CD45). Expression of epidermal growth factor, brain-derived neurotrophic factor, and vascular endothelial growth factor was measured by reverse transcription-polymerase chain reaction. Results of our study showed that ASCs had a greater expansion rate in AS without developing morphological heterogeneity than cells grown in FBS. AS-cultured ASCs expressed representative growth factors, CD44 but not CD45, similar to cells cultured in FBS. Expression levels of some growth factors were different between AS and FBS. In conclusion, our findings indicated that AS could potentially be used as a culture medium supplement for the expansion of autologous ASCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app