Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression.

Journal of Immunology 2013 Februrary 2
Understanding intrathymic T cell differentiation has been greatly aided by the development of various reductionist in vitro models that mimic certain steps/microenvironments of this complex process. Most models focused on the faithful in vitro restoration of T cell differentiation and selection. In contrast, suitable in vitro models emulating the developmental pathways of the two major thymic epithelial cell lineages--cortical thymic epithelial cells and medullary thymic epithelial cells (mTECs)--are yet to be developed. In this regard, lack of an in vitro model mimicking the developmental biology of the mTEC lineage has hampered the molecular analysis of the so-called "promiscuous expression" of tissue-restricted genes, a key property of terminally differentiated mTECs. Based on the close biological relationship between the skin and thymus epithelial cell compartments, we adapted a three-dimensional organotypic coculture model, originally developed to provide a bona fide in vitro dermal equivalent, for the culture of isolated mTECs. This three-dimensional model preserves key features of mTECs: proliferation and terminal differentiation of CD80(lo), Aire(-) mTECs into CD80(hi), Aire(+) mTECs; responsiveness to RANKL; and sustained expression of FoxN1, Aire, and tissue-restricted genes in CD80(hi) mTECs. This in vitro culture model should facilitate the identification of molecular components and pathways involved in mTEC differentiation in general and in promiscuous gene expression in particular.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app