JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium.

Journal of Immunology 2013 Februrary 2
Tubulointerstitial inflammation and fibrosis are strongly associated with the outcome of chronic kidney disease. We recently demonstrated that the NOD-like receptor, pyrin domain containing-3 (NLRP3) contributes to renal inflammation, injury, and fibrosis following unilateral ureteric obstruction in mice. NLRP3 expression in renal tubular epithelial cells (TECs) was found to be an important component of experimental disease pathogenesis, although the biology of NLRP3 in epithelial cells is unknown. In human and mouse primary renal TECs, NLRP3 expression was increased in response to TGF-β1 stimulation and associated with epithelial-mesenchymal transition (EMT) and the expression of α-smooth muscle actin (αSMA) and matrix metalloproteinase (MMP) 9. TGF-β1-induced EMT and the induction of MMP-9 and αSMA were significantly decreased in mouse Nlrp3(-/-) renal TECs, suggesting a role for Nlrp3 in TGF-β-dependent signaling. Although apoptosis-associated speck-like protein containing a CARD domain(-/-) TECs demonstrated a phenotype similar to that of Nlrp3(-/-) cells in response to TGF-β1, the effect of Nlrp3 on MMP-9 and αSMA expression was inflammasome independent, as IL-1β, IL-18, MyD88, and caspase-1 were dispensable. Smad2 and Smad3 phosphorylation in response to TGF-β1 was attenuated in Nlrp3(-/-) and apoptosis-associated speck-like protein containing a CARD domain(-/-) cells, accounting for the dampened EMT and TGF-β1 responsiveness in these cells. Consistent with these findings, overexpression of NLRP3 in 293T cells resulted in increased Smad3 phosphorylation and activity. Taken together, these data support a novel and direct role for NLRP3 in promoting TGF-β signaling and R-Smad activation in epithelial cells independent of the inflammasome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app