JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lipoxygenase inhibitor MK886 potentiates TRAIL-induced apoptosis through CHOP- and p38 MAPK-mediated up-regulation of death receptor 5 in malignant glioma.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers specific apoptosis in tumor cells and is one of the most promising candidates for cancer gene therapy. However, resistance to TRAIL is one of the main impediments to use of TRAIL in cancer treatment. We showed previously that the lipoxygenase inhibitor MK886 in combination with TRAIL exhibits enhanced antitumor activities compared with each agent alone in human glioma cells. In this study, we elucidated the molecular mechanisms responsible for MK886-mediated sensitization to TRAIL-induced apoptosis. We found that MK886 sensitized glioma cells to TRAIL-induced apoptosis by upregulating the death receptor 5 (DR5) and that specific knockdown of DR5 attenuated cell death. The mechanisms underlying this sensitization involved activation of the MK886-induced p38 mitogen-activated protein kinase (MAPK) pathway and subsequent DR5 overexpression. However, treatment with a specific inhibitor or gene silencing of p38 MAPK abolished both the DR5 induction and the increase in apoptosis caused by TRAIL. Taken together, our findings indicate that the increased expression of DR5 in a p38 MAPK-dependent manner plays an important role in the sensitization of MK886 to TRAIL-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app