JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of postexercise cooling on muscle oxygenation and blood volume changes.

PURPOSE: The aim of this study was to investigate the effects of postexercise cold water immersion (CWI) on tissue oxygenation and blood volume changes after intense exercise.

METHODS: Nine physically active men performed 30 min of continuous running (CR) at 70% of their maximal treadmill velocity (Vmax), followed by 10 bouts of intermittent running at Vmax. After exercise, one of the participants' legs was immersed in a cold water bath (10°C, CWI) to the level of their gluteal fold for 15 min. The contralateral leg remained outside the water bath and served as a control (CON). Vastus lateralis (VL) skin temperature (TskVL), VL oxygenation (tissue oxygenation index [TOI]), and blood volume changes (total hemoglobin [tHb] volume) were monitored continuously throughout exercise and CWI using near-infrared spectroscopy.

RESULTS: TskVL, TOI, and tHb were not significantly different between CON and CWI during continuous running and intermittent running, respectively (P > 0.05). In contrast, TskVL was significantly lower in CWI compared with CON throughout immersion, with peak differences occurring at the end of immersion (CON = 35.1 ± 0.6 vs CWI = 16.9°C ± 1.7°C, P < 0.001). tHb was significantly lower during CWI compared with CON at most time points, with peak differences of 20% ± 4% evident at the end of the 15-min immersion (P < 0.01). Likewise, TOI was significantly higher in CWI compared with CON, with peak differences of 2.5% ± 1% evident at the 12th min of immersion (P < 0.05).

CONCLUSIONS: Postexercise cooling decreased microvascular perfusion and muscle metabolic activity. These findings are consistent with the suggested mechanisms by which CWI is hypothesized to improve local muscle recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app