Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Mechanisms of cyclosporine A inhibition of antigen-presenting activity in uninvolved and lesional psoriatic epidermis.

To elucidate how cyclosporine A affects antigen-presenting cell subsets and their function in human skin, we studied patients with psoriasis undergoing a therapeutic trial of cyclosporine A. Immunologic parameters abnormal in psoriatic epidermis were evaluated before and early in the course of therapy. We quantitated function and numbers of skin biopsy-derived epidermal cells with potential antigen-presenting cell (APC) activity. The antigen-presenting capacity of epidermal cells from normal-appearing skin to activate allogeneic T cells was profoundly inhibited (81% decrease) 7 d after the onset of therapy (p less than 0.05). Thus, cyclosporine A therapy inhibited T-cell activation mediated by Langerhans cells in uninvolved skin. By contrast, in lesional skin epidermal allo-antigen presenting activity was only partially inhibited at this early time point (55 +/- 7% decrease) (p less than 0.01, n = 8). The percentage decrease in allo-antigen-presenting cell activity correlated with reduced clinical activity of the lesions, r = 0.84. In three patients also examined at 14 d, we found an additional 42 +/- 5% decrease between day 7 and 14. Decreased allo-antigen-presenting activity in lesional skin was not associated with a decrease in the number of CD1+ Langerhans cells or epidermal cell release of detectable amounts of cyclosporine A or other soluble factors that abrogate T-cell alloreactivity. The time course and degree of inhibition of antigen-presenting capacity within involved psoriatic skin correlated best with a significant (p less than 0.01) reduction in non-Langerhans cell DR+ leukocytes (from 3.0 +/- 1.2% to 1.0 +/- 0.6% at day 7) (r = 0.71). Cyclosporine A therapy was associated with a rapid and complete loss of HLe1-DR+ keratinocytes (94% decrease at 7 d) in lesional skin despite the skin still being quite involved with psoriasis at this point and antigen-presenting cell activity being only 60% reduced. In conclusion, cyclosporine A interferes with T-cell activation by human epidermis through at least two mechanisms: 1) in uninvolved skin, rapid inhibition of Langerhans cell-mediated activation of T cells, and 2) in lesional skin, delayed inhibition of antigen-presenting activity which appears to correlate with the time course and level of reductions in non-Langerhans cell DR+ leukocytes. The antigen-presenting activity of the latter cells appears to be cyclosporine A resistant. In psoriatic lesions, early and complete loss of DR expression on lesional keratinocytes during cyclosporine A therapy is likely due to decreased lesional T-cell lymphokine production critical for keratinocyte DR expression.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app