Add like
Add dislike
Add to saved papers

Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β-catenin signal pathway activation.

OBJECTIVE: To observe the function of wnt/β-catenin signal pathway on the process that epimedium-derived flavonoids (EFs) regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, and to provide an experimental evidence for the mechanism of EFs on treating postmenopausal osteoporosis.

METHODS: Bone marrow stromal cells from ovariectomized rats were separated and cultivated in the condition of osteoinductive medium or liquid medium for 15 days. Low- (1 μg/mL), medium- (10 μg/mL) and high- (100 μg/mL) dose EFs were administrated correspondingly. Alkaline phosphatase (ALP) staining, ALP activity determination, oil red O staining and realtime polymerese chain reaction (RT-PCR) were used to determine the effect of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats. Moreover, in order to explore the mechanism of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, Dickkopf-related protein 1 (DKK1) was used in the medium group. Enzymelinked immunosorbent assay (ELISA) and RT-PCR were used to determine mRNA levels of β-catenin, low density lipoprotein receptor-related protein 5 (LRP5) and T cell factor (TCF) protein, known as wnt/β-catenin signal pathway related factors.

RESULTS: EFs increased mRNA expression levels of ALP and early osteoblast differentiation factors, such as runt-related transcription factor 2 (Runx2), osteocalcin and collagen I, and decreased mRNA expression levels of fat generation factors, such as peroxisome proliferator activated receptor gamma 2 (PPARγ-2) and CCAAT enhancer-binding protein-α (C/EBPα) in a dose-dependent manner. While osteoblast differentiation factors were down-regulated, fat generation factors were up-regulated when DKK1 was applied. Also EFs up-regulated mRNA expression levels of β-catenin, LRP5 and TCF protein which could be blocked by DKK1.

CONCLUSION: EFs regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats by activating wnt/β-catenin signal pathway, which may be an important molecular mechanism of EFs on treating postmenopausal osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app